Current Issue : April-June Volume : 2022 Issue Number : 2 Articles : 5 Articles
In this paper, the multiple-input, multiple-output (MIMO) radar signal processing algorithm is efficiently employed as an anticollision methodology for the identification of multiple chipless radio-frequency identification (RFID) tags. Tag-identifying methods for conventional chipped RFID tags rely mostly on the processing capabilities of application-specific integrated circuits (ASICs). In cases where more than one chipless tag exists in the same area, traditional methods are not sufficient to successfully read and distinguish the IDs, while the direction of each chipless tag can be obtained by applying MIMO technology to the backscattering signal. In order to read the IDs of the tags, beamforming is used to change the main beam direction of the antenna array and to receive the tag backscattered signal. On this basis, the RCS of the tags can be retrieved, and associated IDs can be identified. In the simulation, two tags with different IDs were placed away from each other. The IDs of the tags were successfully identified using the presented algorithm. The simulation result shows that tags with a distance of 0.88 m in azimuth can be read by a MIMO reader with eight antennas from 3 m away....
In this paper, a general overview regarding neural recording, classical signal processing techniques and machine learning classification algorithms applied to monitor brain activity is presented. Currently, several approaches classified as electrical, magnetic, neuroimaging recordings and brain stimulations are available to obtain neural activity of the human brain. Among them, non-invasive methods like electroencephalography (EEG) are commonly employed, as they can provide a high degree of temporal resolution (on the order of milliseconds) and acceptable space resolution. In addition, it is simple, quick, and does not create any physical harm or stress to patients. Concerning signal processing, once the neural signals are acquired, different procedures can be applied for feature extraction. In particular, brain signals are normally processed in time, frequency, and/or space domains. The features extracted are then used for signal classification depending on its characteristics such us the mean, variance or band power. The role of machine learning in this regard has become of key importance during the last years due to its high capacity to analyze complex amounts of data. The algorithms employed are generally classified in supervised, unsupervised and reinforcement techniques. A deep review of the most used machine learning algorithms and the advantages/drawbacks of most used methods is presented. Finally, a study of these procedures utilized in a very specific and novel research field of electroencephalography, i.e., autobiographical memory deficits in schizophrenia, is outlined....
,is paper first establishes a new complex independent component analysis (cICA) algorithm based on the spatiotemporal extension of complex-valued entropy bound minimization (CEBM) to separate received complex-valued radar signals. Next, we propose a new cICA-based detector with an open structure to find Swerling model targets, lognormal targets, and sea-surface small floating targets in coherent high-resolution maritime surveillance radars. ,e detector encountered three major problems when adopting cICA for detection and solved them using three effective suggestions. After performing cICA on the time series received by the radar, we obtained two different sources. Using the first and second theoretical and empirical moment estimates of the K-distribution, the target was selected between these two output source signals. Detector performance was verified quantitatively and qualitatively using the real-life IPIX radar database. Comprehensive experiments on this database with synthetic injected targets showed promising results. ,e computational time and sample size dependency of the proposed cICA algorithm were also discussed. Finally, a comparison of the detector with several novel detectors for detecting sea-surface floating small targets of the IPIX radar database demonstrated the proposed detector’s superiority....
With the gradual increase in the informatization, there is much software in various industries, such as data management, business execution, public orientation, and company OA, which greatly facilitates the development of various tasks, but it also brings many hidden dangers. (ere exist certain vulnerabilities in some software, which have become backdoors to be attacked. In view of these needs and potential hazards, the ultrasonic data acquisition and signal processing algorithms are introduced in this paper, analyzing and grasping the possibility of potentially dangerous paths by combining the instruction addresses and locations of software vulnerabilities, and avoid the existence of these software vulnerabilities through corresponding constraint instructions. (e simulation experiment results prove that the ultrasonic data acquisition and signal processing algorithms are effective and can support the detection and analysis of man-machine interactive software vulnerabilities....
The objective of this study was to investigate the use of signal processing to detect eructation peaks in methane (CH4) released by dairy cows during robotic milking using three gas analysers. This study showed that signal processing can be used to detect CH4 eructations and extract spot measurements from individual cows whilst being milked. There was a reasonable correlation between the gas analysers studied. Measurement of eructations using a signal processing approach can provide a repeatable and accurate measurement of enteric CH4 emissions from cows with different gas analysers. Abstract: The aim of this study was to investigate the use of signal processing to detect eructation peaks in CH4 released by cows during robotic milking, and to compare recordings from three gas analysers (Guardian SP and NG, and IRMAX) differing in volume of air sampled and response time. To allow comparison of gas analysers using the signal processing approach, CH4 in air (parts per million) was measured by each analyser at the same time and continuously every second from the feed bin of a robotic milking station. Peak analysis software was used to extract maximum CH4 amplitude (ppm) from the concentration signal during each milking. A total of 5512 CH4 spot measurements were recorded from 65 cows during three consecutive sampling periods. Data were analysed with a linear mixed model including analyser period, parity, and days in milk as fixed effects, and cow ID as a random effect. In period one, air sampling volume and recorded CH4 concentration were the same for all analysers. In periods two and three, air sampling volume was increased for IRMAX, resulting in higher CH4 concentrations recorded by IRMAX and lower concentrations recorded by Guardian SP (p < 0.001), particularly in period three, but no change in average concentrations measured by Guardian NG across periods. Measurements by Guardian SP and IRMAX had the highest correlation; Guardian SP and NG produced similar repeatability and detected more variation among cows compared with IRMAX. The findings show that signal processing can provide a reliable and accurate means to detect CH4 eructations from animals when using different gas analysers....
Loading....